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Abstract. We report the recent results of proton and anti-proton yields as a function of centrality
and pT in Au+Au collisions at

√
sNN = 200 GeV, measured by the PHENIX experiment at RHIC. In

central collisions at intermediate transverse momenta (1.5< pT < 4.5GeV/c) a significant fraction
of all produced particles is protons and anti-protons. They show a different scaling behavior from
that of pions. The p/π and p/π ratios are enhanced compared to peripheral Au+Au, p+p and e +e−
collisions. This enhancement is limited to pT < 5GeV/c as deduced from the ratio of charged
hadrons to π 0 measured in the range 1.5< pT < 9GeV/c.

Heavy-ion collisions at RHIC energies allow us to study the properties of nuclear
matter at extreme energy densities. High pT hadrons production originating in the
fragmentation of partons with a large momentum transfer (hard processes) are sensitive
probes of the hottest and densest stage of the collision. One of the most significant results
from the first year of RHIC run was the suppression of yields both for charged and π 0

at high pT in central Au+Au with respect to the number of nucleon-nucleon collisions
(Ncoll) [1, 2]. Moreover, it was found that π

0 yields are more strongly suppressed than
for charged hadrons [1], and the yields of p and p near 2GeV/c in central collisions
are comparable to the yield of pions [3]. These observations suggest that a significant
fraction of all particle yields is p and p at the intermediate pT in central Au+Au
collisions.We present here the results of p and p yields including their scaling properties
and ratios of p/π , p/π as a function of centrality in Au+Au collisions at √sNN = 200
GeV measured by the PHENIX experiment [4]. The detailed analysis methods and
results are found in references [5, 6] for identified charged hadrons, in reference [7]
for π0, and in reference [8] for inclusive charged hadrons.
Figure 1 shows the p/π and p/π ratios as a function of pT measured at mid-rapidity

in central (0–10%), mid-central (20–30%), and peripheral (60–92%) Au+Au collisions
at

√
sNN = 200 GeV. For all centralities the ratios rise steeply at low pT and then, at a

value of pT which increases from peripheral to central collisions, level off. In central
collisions the ratios are a factor of∼ 3 larger than in peripheral events. At pT > 2GeV/c
the peripheral Au+Au data agree well with the ratios observed in p+ p collisions
at lower energies [9]. Above 3 GeV/c the p/π , p/π ratios in peripheral collisions
are also consistent with gluon and quark jet fragmentation [10]. Deviations from jet
fragmentation below 3 GeV/c indicate the absence of soft hadron production in the e+e−
data. In Figure 2, we compare the Ncoll scaled central to peripheral yield ratios, RCP, for
(p+ p)/2 and π0. In the pT range from 1.5 to 4.5 GeV/c, p and p are not suppressed in
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FIGURE 1. p/π (left) and p/π ratios for central(0-10%), mid-central(20-30%) and peripheral (60-
92%) Au+Au collisions at

√
sNN = 200 GeV [5, 6]. Open (filled) points are for charged (neutral) pions,

respectively. Data from
√
s = 53 GeV p+ p collisions [9] are shown with stars. The dashed and dotted

lines are (p+ p)/(π+ +π−) ratio in gluon and in quark jets [10].

contrast to π0 which are largely suppressed by a factor of 2-3. Moreover, this behavior
holds for all centralities (see references [5, 6]), while the suppression in the π 0 yields
increases from peripheral to central collisions [7].
It is interesting why the suppression for p and p is absent in central Au+Au collisions.

Recently the observed abundance of protons yields relative to pions in central collisions
has been attributed to the recombination of quarks, rather than fragmentation [11]. In this
model, recombination for p and p is effective up to pT � 5GeV above which fragmenta-
tion dominates for all particle species. Another explanation of the observed large baryon
content invokes a topological gluon configuration: the baryon junction [12]. A centrality
dependence, which is in qualitative agreement with the results presented here, has been
predicted [13]. In both theoretical models, the baryon/meson enhancement is limited
to pT < 5–6 GeV/c. In order to test these theoretical predictions, we measure charged
hadrons to π0 measured in 1.5 < pT < 9GeV/c (see references [5, 8]). It is found that
in central collisions for 1< pT < 4.5 GeV/c, h/π0 ratio is enhanced by as much as 50%
above the p+ p value. Above pT � 5GeV/c, the particle composition is consistent with
that measured in p+ p collisions. This indicates that the scaling of the proton yields
should become consistent with that of pions at pT > 5 GeV/c. Similar limiting behavior
of baryon/meson enhancement is observed in Λ and K0S by the STAR collaboration [14].
It is possible that nuclear effects such as the “Cronin effect” [15] contribute to the ob-
served large (anti)proton/pion ratios. The recent results of inclusive charged hadrons and
π0 in d+Au at √sNN = 200GeV suggest that the Cronin effect in baryons is different
from that in mesons [16]. Detailed studies of particle composition in d+Au collisions
will help our understanding of the baryon production at the intermediate pT region at
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FIGURE 2. Nuclear modification factor RCP for (p+ p)/2 (filled circles) and π 0 [5, 6]. Dashed and
dotted lines indicate Ncoll and Npart (number of participant nucleons) scaling; the shaded bars show the
systematic errors on these quantities.
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